

Down Flow Gas Contactor

Presentation by Jyoti Palekar

Why DGC ?

What is DGC ?

DGC is a Co-current Down flow Reactor providing the most efficient Mass Transfer System for Gas Liquid Contact

Downflow Gas Contact Reactor

- Consists of Column Reactor.
- Downward Co-current flow of Gas and Liquid – through specially designed entry section.
- Shear created at interface provides effective gas-liquid mixing: allows mass transfer operations to approach equilibrium in very short contact time.

Bubble Dispersion in DGC

DGC Reactor – A snapshot

Gas Utilisation	Close to 100%
Gas/liquid mass transfer	1000 – 6000 m2/m3
area	
Volumetric Mass Transfer	0.2 – 12 kLa
Coefficient	
Internal Moving parts	Absent
Scale-up (without loss in	Easy
efficiency)	
Engineering and Fabrication	Low as the system can be fabricated in India. Only top nozzle
costs	of DGC will be imported
Design	Simple/ Compact /Flexibility
Environmental Applications	Gas absorption (Biogas enhancement, EO treatment, Air
	Stripping of VOCs/ Solvents etc)
	Waste water treatment
	DGC for Wet air oxidation process- effluent / sludges
	Activated sludge treatment
	Fermentation
Operation Mode	Batch/continuous mode
Operating volume	Smaller
Tolerance to particulates	high solid content
Modifications	Can be modified to incorporate UV, Ozone, $O_2/UV/TiO_2$ etc.

Industrial Applications

- GAS ABSORPTION
- EFFLUENT TREATMENT
- CHEMICAL REACTIONS

Case Study - CO₂ Capture from Biogas

Media Composition	60% Biogas, 38% CO2, 2% H2S	
Media Used	Sea salt NaOH + Water	
	Na ₂ CO ₃ +Water+MethylEthylamine	
	Sea water	
Liquid Flow Rate	10-15 L/min	
Gas Flow Rate	1-3 L/min	
Pressure	1-4.5 bar	
Inlet CO_2 in Air	38%	
Outlet CO_2 in Air	2-8 %	

CASE STUDY- PHARMACEUTICAL

WASTEWATER TREATMENT

UV Lamp	2.0kw
Flow Rate	10 L/min
Gas Flow Rate (O ₂ flow rate)	0.05 L/min
Temperature	33 ⁰ C
Pressure	0-8 bar
Operating Mode	Batch
Volume Of DGC Reactor	17 Litre
Batch Volume	15 Litre
Residence time in DGC	1.5 min
Contact time	O ₂ - 42 sec
	UV- 36 sec

COD reduction in DGC

DGC Advantages

- Lower power consumption
- Smaller operating volumes
- No foaming
- Close 100% Gas utilisation
- High and accurate control of interfacial areas
- Simple, compact and flexibility of design

- > No internal moving parts
- Lower capital and operating costs
- Higher gas hold ups
- Following Tolerance to particulates
- Ease of scale-up with no loss of efficiency
- ➢ Ease of automation and control
- Low engineering and fabrication costs

Wide application of DGC technology in waste treatment will include:

- Treatment of effluents from pulp and paper industry,
 Pharmaceutical effluents, spent caustic from refineries,
 pesticide effluents, dye industry and cyanide containing
 effluents eg. steel, electroplating industries.
- Treatment of landfill leachates
- DGC can be used for biological treatment process from achieving the effective transfer of oxygen.

- For biogas enhancement increasing the methane content of biogas
- Reducing the carbon footprint by Carbon capture from flue gas- power plants, iron ore industry
- Capture and degradation of gaseous pollutants such as ethylene oxide without scrubbing and generating liquid effluents.
- > Minimisation of sludge from wastewater treatment plant

GAS ABSORPTION

- Gas-Liquid contacting devices are widely used in the chemical industry for absorbing gases into liquids and solvents
- Conventional devices range from stirred vessels to packed beds and bubble columns
- Most devices employ up flow mode of gas flow with relatively low gas hold ups
- Problems with conventional technologies include gas disengagement, coalescence and back mixing problems
- ➢ Gas pockets are also formed causing safety problems

DGC Pilot Plant P&ID

Thank You